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CALCULATION OF CAMBER USING SLENDER WING THEORY
AT MACH NUMBER 1.0%*

By William B. Igoe
Langley Research Center

SUMMARY

A calculation procedure based on slender wing theory at Mach number 1.0 is pre-
sented for the determination of the mean line camber ordinates for laterally symmetrical
wings with polygonal planforms. A uniform chordwise load and a continuous but otherwise
arbitrary spanwise load distribution is assumed. The procedure is generally limited to
slender wings at high subsonic speeds and low lift coefficients.

Graphs of functions required in the calculation procedure are presented. In addition,
an application of the method of calculation for a variable-sweep wing planform is described
and some calculated camber resulis are shown. Although the slender wing theory for
Mach number 1.0 is considered to be inadequate for the calculation of the detziled shape of
airfoil section camber for supercritical wings designed for near-sonic speeds, a compari-
son with experimental results shows that it predicts the general magnitude and trend of the
spanwise variation of the wing twist angle.

INTRODUCTION

Slender wing theory was introduced in 1946 by Robert T. Jones in reference 1, and
in 1948, the application to sonic flow was stated explicitly by Heaslet, Lomax, and Spreiter
in reference 2. At about the same time; similar results were obtained in England by
A, Robinson and in France by R. Legendre, E. A. Eichelbrenner, and A. von Baranoff.
Detailed references to these developments are contained in volumes 6 and 7 of the
Princeton Series on High Speed Aerodynamics and Jet Pi'opulsi‘on. (See refs. 3 and 4.)

As shown in reference 2, the linearized potential flow theory equation relating the
downwash of a slender lifting wing to its load has an especially simple form at Mach 1.
This equation for the downwash at a field point on a wing at Mach 1 has the same form as
the incompressible flow equation for the downwash in the far wake (neglecting rollup. of the

*The information presented herein is based on a thesis submitted in partial fulfill-
ment of the requirements for the degree of Master of Science in Aeronautical Engineering,
George Washington University, Washington, D.C., February 1971.




trailing-vortex sheet) downstream of the field point for that part of the wing ahead of the
field point. The relationship between the sonic and incompressible flow fields is easily
visualized when the Prandtl-Glauert compressibility factor for Mach 1 is considered as
stretching the wing dimensions infinitely in the streamwise direction. The pressure sig-
nals in the zone of silence behind a sonic Mach line through the field point cannot propa-
gate upsiream in sonic flow. Therefore, only that part of the wing forward of the field
point contributes to the downwash at the field point.

The simple form of the downwash equation for a slender lifting wing in sonic flow and
its resemblance to the far-wake downwash equation of incompressible flow allows a simple
solution to be used. This solution is similar to the lifting~line theory solution of Glauert '
in reference 5 for incompressible flow. By following Glauert's method, the sonic wing
downwash velocity, and thereby the local streamwise slope of the wing-section cambered
mean lines, may be expressed in terms of the coefficients of a Fourier sine series. This
series represents the partial spanwise load distribution of that part of the wing ahead of
the field point. The local cambered mean line slopes may then be integrated streamwise
to obtain cambered mean line ordinates.

For the special case of a polygonal wing planform with lateral symmetry and with
uniform chordwise load, the Fourier coefficients for computing cambered mean line slopes
and similar coefficients for computing cambered mean line ordinates have been derived
for continuous but otherwise arbitrary spanwise load distributions. The sum of the
resulting series expression for cambered mean line ordinates has been taken to obtain
a closed-form solution. This closed-form solution avoids the necessity of evaluating
a term-by-ferm summation of a slowly convergent series which requires a large num-
ber of terms for numerical accuracy. The resulting solution is applicable to a variety
of wing planforms, including those typical of variable-sweep wings. It can be extended
to other planforms by means of Superposition. Ths usefulness of the slender wing
theory at Mach 1 is mainly for wings at high subsonic speeds. As indicated in refer-

ence 2, this simplified form of the linear theory should be applicable for wings for which
the slenderness parameter PBA is small.

Graphs of the functions encountered in the closed-form solution are presented and
an application of the method of calculation for a variable-sweep wing planform is
described. Some calculated camber results are included and the theoretical wing twist
distribution for a supercritical wing designed for near-sonic speeds is compared with an
experimentally obtained twist distribution.



Cp

SYMBOLS
aspect ratio

coefficient in trigonometric sine series representing the wing~section
design lift coefficient distribution (see eq. (A4))

coefficient in Fourier sine series representing the partial wing spanwise
load distribution (see eq. (4))

wing span
wing lift coefficient

coefficient in series solution for wing mean line camber ordinates
(see eq. (8))

pressure coefficient

ACp = <Cp>lower surface <Cp>upper surface

c

Cav

¢l

wing chord (streamwise, in general, except for c¢; with o< %)
average chord, S/b

section lift coefficient

function in analytical summation of series (see eq. (C1))
perpendicular distance from wing pivot point to wing leading edge
perpendicular distance from wing pivot point to wing trailing edge
perperidicular distance from wing pivot point to wing-tip chord

function in analytical summation of series (see eq. (C4))

functions of n, m,and 6 (see egs. (All), (A12), (B6), and (BT))




Em function in recursion formula solution for Ay, coefficients for elliptical
spanwise load distribution on straight-tapered wings (see eq. (E5))

k=tan A (with exception of kg = -tan o)
H

k' = tan A' {(with exception of ké = -tan o')

Lo o functions in summation for wing mean line camber ordinate (see eq. (14))

T

length of variable-sweep wing in fully swept position with straight leading
edge (before truncation)

M free~stream Mach number

m index in trigonometric series for section lift coefficient distribution
(odd integers only for wings with lateral symmetry)

n index in Fourier series for P* (odd integers only for wings with
lateral symmetry)

p* partial wing spanwise load distribution function (see eq. (2))

e integer

r index of summation

3 wing area

g partial wing area

] index of summation of Ly g functions (see eq. (14))

v free-stream velocity (parallel to X-axis)

W downwash velocity (parallel to Z-axis)

X,Y,7 streamwise, spanwise, and vertical orthogonal Cartesian coordinates with

origin at the wing leading-edge apex



Xy ' streamwise distance from leading-edge apex to intersection with X-axis
of line projected from outboard leading edge of variable-sweep wing panel

Xh streamwise distance from leading-edge apex to intersection with X-axis of
line projected from wing tip chord 'Cfor o< -72[>

Xle streamwise location of leading edge of local chord

Axg local streamwise distance from wing leading edge to field point

N span of variable-sweep wing in fully swept position (before truncation)
Vi spanwise point at which Mach line (xg = Constant) through field point

intersects the wing leading edge

V9 spanwise point at which Mach line (xg = Constant) through field point
' intersects the wing trailing edge

y3 spanwise point at which the Mach line (xg = Constant) through field point
intersects the inward slanted wing tip (for o< -g—)

Azg camber ordinate measured with respect to leading edge of local streamwise
chord \(AZO =29 - Zle>

B =(1-M2)L/2

A difference

o angle between wing outboard leading and trailing edges <6 =M - Az\}
€ wing twist angle

0 = cos~1(-y)

A sweep angle

by taper ratio for straight-tapered wings

9 angle of wing tip chord with respect to Mach line (0 =o'+ A} - AI)




Subscripts:

AB lower and upper limits. Xxp corresponds to wing leading edge and xp
corresponds to wing trailing edge or line Xy in general. y A and yp
correspond to left and right wing tips or to -yq .and yq, respectively.
) )y and 6p are similarly defined

k wing leading-edge kink for variable-sweep wings
le leading edge

o) wing pivot

r wing root

te trailing edge

£ wing tip

0 field point

1 wing leading edge

P wing trailing edge

3 wing tip

Superior or overhead bar (7) indicates dimensional length. Unbarred lengths are
nondimengionalized with respect to the wing semispan. Asterisk (*) superscript indicates
partial wing parameter. Prime (') superscript indicates wing geometric characteristics
when leading edge is straight for variable-sweep wing.

BASIC EQUATIONS

In linearized wing theory, the equation relating the downwash or normal induced
velocity at a field point to the partial loading ahead of the field point for a slender lifting
wing at M =1 is given by equation (62) of reference 2. This equation may be written as

oPX*
wog_ 1 (YB 9y

v am Jyp Yo~ ¥

dy (1)



where

*B

pr= ("B ac, ax )
ZA

and the limits of integration are established by the boundaries of the region S* as shown

in figure 1. Satisfaction of the Kutta condition at the wing trailing edge is assured by

imposing the condition that the load distribution is zero behind the trailing edge. The

velocity ratio in equation (1) is equal to twice the normal induced velocity ratio in the

near wake for incompressible flow (see ref. 5, for example) for a lifting-line wing con-

sisting only of the region S*. The factor of two accounts for the difference between near-

wake and far-wake conditions if rollup of the wing trailing vortex sheet is neglected.

A well-known method of evaluating the improper integral of equation (1) with the use
of Fourier analysis was shown by Glauert (ref. 5). By following reference 5, the spanwise
variable 0 is introduced so that

y =~-cos 9 ‘ (2
where 0 varies from 0 to 7 as y varies from -1 to 1 as shown in figure 2.
The partial load function P* is then expanded in a Fourier series
[}
P*= z By sin n6 (4)
n=1

With the use of equations (3) and (4), the integral of equation (1) becomes

(%]
nBy cos nd
Yo L (B o (5)
v 47 Op cos 0 - cos b /

The order of summation and differentiation has been interchanged in obtaining equation (5).
Reference 6 shows that this interchange of order is permissible if the function P* is
continuous and if its derivative is sectionally continuous in the interval -7 =927 In
general, this requirement is satisfied for wings with span load distributions which are
everywhere continuous. The conditions on P* are also sufficient to permit the inter-
change of order of summation and integration. Accordingly, the integral of equation (5)
may be taken inside the summation sign and evaluated as shown in reference 5 to obtain

W 1 e an sin nBO
vV 4 Zl sin 90 (6)
n=




In this step the lower and upper limits of integration for 6 have been takenas 0 and 7,
respectively. The extension of the limits for 6 beyond those defined by S* is possible
if the function P* is defined as being zero outside the region S*

The slope of the mean line camber is equal to the downwash velocity ratio

&,

7 _ W

dx V

Hence the slope of the mean line camber may be obtained directly from equation (6). Inte-
gration of equation (6) with respect to x gives the mean line camber ordinate

[~ ]
e —-——1——-—- 2 » i ) 7
4 Tsin G nC, sinn 0 (7
n=1
where
0
Cp = § B, dx (8)
0

and again the order of summation and integration has been interchanged. By taking the
integral limits on x from O to the field point xg, the camber ordinates are obtained
with respect to the leading-edge apex. An indeterminate form is encountered in equa-
tions (6) and (7) for field points at the wing tip where 6y = 7. The limiting form is seen
to be

Jfim %‘ﬁ = n(-1)?+1
- T

Thus, for 6y = 7, equations (6) and (7) may be rewritten as

(2]
W
L=-15 a2 (pt (60 = ) ()
n=1
and
©0
z=-1 Z n2c (-1)n+1 (6g = m) (10)
4 n
n=1

The series summations of equations (9) and (10) are generally not convergent so that

W

T?Q - * and z-*° as 6y- 7. Equations (6) and (7) have not been restricted as to wing
planform or load distribution with the exception that the partial load function P* must be
continuous and have a sectionally continuous first derivative. In the following analysis,

the applications are restricted to wings with lateral symmetry and with a uniform
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chordwise load distribution. This chordwise load distribution causes infinite camber
slopes to appear at the leading and trailing edges but the camber ordinates are finite
except at the discontinuities represented by the wing root, wing tip, and wing 1e&dé.mga= edge
sweep discontinuity in the case of a variable-sweep wing.

For a uniform chordwise load distribution, the B, Fourier coefficients of equa-
tion (4) are evaluated in appendix A for a wing planform and a field-point location similar
to that shown in figure 2. For the same conditions, an evaluation of the C; coefficients
of equation (8) is shown in appendix B. The results of an analytical summation of the
series of equation (7) are presented in appendix C and an example of the procedure used
in obtaining the summation terms is shown in appendix D. Some methods of obtaining
the Ay, coefficients which are needed to define the spanwise section lift coefficient dis-
tribution

cg = E Ay, sin mo (11)
m

are discussed in appendix E.

The application of the method of calculating camber is shown for wings with less
restricted planform geometry and field-point location than are considered in appendixes A
and B. However, the limitation of uniform chordwise load distribution is retained.

APPLICATION TO WINGS OF SPECIFIED PLANFORM

The equations developed in the preceding section and in appendixes A, B, and C are
extended and applied to a wing planform with discontinuous slope (sweep angle) of the
leading edge. This planform configuration is encountered in variable-sweep wings of the
type shown in figure 3. The leading edges are idealized as straight continuous line seg-
ments. The trailing edges are taken as continuous straight lines with continuous swee‘p
angles. Wings with swept forward leading or trailing edges or with wing tips that are
leading edges are not considered. The leading-edge sweep of the outboard portion of the
wing is limited to angles equal to or less than the leading-edge sweep of the fixed inboard
part of the wing. The latter conditions may be expressed as




Although other planform configurations are possible in variable-sweep wings, the config-
urations included under these conditions are considered the ones most likely to be encoun-
tered in practice.

Wing Geometry

The equations in the preceding section and in appendixes A, B, and C have been
developed for a wing of unit semispan. However, for variable-sweep wings the geometry,
including the semispan, changes with sweep angle. It will be convenient in the camber cal-
culations to consider certain geometrical parameters describing the variable-sweep plan=
forms to be dimensional in character. The wing geometry will then be nondimensionalized
in terme of the semispan for each wing-sweep angle. The dimensional parameters will be
indicated by a superior or overhead bar. Plain or unbarred parameters will be nondimen-
sional. The following fixed constants will be considered given: A'l , 0, of z_cp, Sr'p, ds,
Ct, and ?c’?re In addition, the variable-sweep angle Al of the leading edge of the outboard
part of the wing will also be given.

The guantities which are needed to introduce the effects of variable-wing geometry
into the wing camber calculations can be computed from the input constants and Ay. The
physical significance of most of the following geometrical guantities can be inferred from
the sketch of figure 3. The first step is to obtain the angles and slopes of the various
edges of the wing under variable-sweep conditions:

Ao =Ny~ b
? 1
Ag=Aj -0

U=0“+A'1—A1

k][ = tan Al
% 2
k]l = tan A1
kz = tan Az
T 1
ky = tan .A2
kg = -tan o
? ?
}13 = “tan 0

10



The next step is to obtain the length parameters which are needed to establish the nondi-
mensional geometry and the criteria for determining field-point regions under variable-
sweep conditions:

— A — H

dq = (xp - kiyp> cos A1

Ez— 4 1 d3 + dl ) <0"§0'<%>
2 1Y kl'k3 (.JOSO' COSA1

— _ (_7)
b_z g=1
5" p+d3 \ 2
Bl _s ,_1 [ % d

2. 7P k'l-k:.,’ COS G cos Ay

_ -4 _

Xal=xp-cosAl-klyp

— -_— a — T T
Xb=xp+-(5—s3-—o+yptano' <G §0<§>

- A - =

dg = (cr + k'zyp - xp> cos A'2
da

cos Ay

- k2§’-p

Ik

X v
k]. = kl

- ? — At = f&m
Vi = coszA'1 é‘1xp + yp> (A1=23)

i = kT

The computed quantities A,'?.’ k'l, k’z, k:'S’ dy, dg, b/2 do not change with the
variable-sweep angle. The remainder of the quantities are functions of the sweep angle.
The quantities X3, Xp, Cp, 'y'k, and Xj are divided by the semispan b/2 to obtain
the nondimensionalized values of these quantities. The dimensional semispan /2
divided by itself becomes the nondimensional semispan Vi = 1.0.

The method of calculation is, of course, applicable to other than variable-sweep wing
planforms. For instance, fixed straight-tapered sweptback wings can be represented by
specifying a pivot axis which coincides with the wing leading-edge apex. Fixed wings with
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discontinuous leading-edge sweep can be represented by specifying a pivot axis which coin-
cides with the wing leading-edge sweep discontinuity. In the latter case, E} may not be
known and can be determined by the following relation:

_ cos Ao _ cos Mg \_ cos Ag\
Cp = 2 Cp + (1 - 2>Xp - ké - k9 '2>yp (12)

? ?
cos AZ cos A2

The wing geometry relations presented in this section are sufficient for a complete
description of a variable-sweep wing as required for a calculation of the camber.

Field-Point Locations

In specifying field-point locations, it is convenient to use streamwise coordinates
which are measured from the leading edge of the local chord and are expressed in frac-
tions of that chord

AXg %0 - Xg
— = —— (13)

Here xje 1is the streamwise location of the leading edge of the local chord, measured
from the wing leading-edge apex. For variable-sweep wings of the type described in the
preceding sections, the field-point coordinates may be calculated with the aid of equa-

tion (13) as follows:

?

For 0<ygSyg and o' 053,

C=Cp+ 6{2 - kDyO
AKX
Xp = (——C-Q-) [Cr + (kz - k;.) YO:l + kiyo

For yp<yg=yt-ctcoso and o' Sos

s

TES

C=Cp - Xa,+(k2— kl>y0
%0 =(f—c{9->Er - xa+(k2 - k1> y0]+ Xa + k1y0

For y;-ctcos 0<ygsyt and a'éoé%,

¢=Xb'Xa+(k3-k1>Yo

AXO ‘
Xy = -—c—->l:xb - X, + (k3 - k1> y()] + X5 + K1y



The foregoing relations are not necessary for a satisfactory specification of field
points. Any suitable method of specification may, of course, be used. One other method
which was found useful was to specify field-point-coordinate locations on the wing in the
fully sweptback position (with the leading edge straight). At the forward sweep positions,
the field points were considered to have moved with the wing. A description of some cam-
ber results obtained in this way is presented in a subsequent section.

Calculation of Mean Line Camber Ordinates

In addition to the field-point coordinates (XO,yO) and the kink coordinates i Xkyyk)y
the following quantities are used in the calculation:

- EQ < < Y
XO - Xa
y1 = kq (Xk SxgEX, + kﬁyt)
Y2 = Xok—z = (cr = xq)
XO - Xb
Y37 k3 o (Xa +k1y; <x%9 and o< %)

From these values of y, the values of 6 are obtained from equation (3), in general, as

6 = cos™1(-y)

so that, for example, 6y = cos‘l(—yo') and 6 = cos*l(—yk), ete.

By rewriting equation (7) with the use of equations like equation (B5) for C, and
substituting the summation equations (C1) to (C4), the expression for the mean line cam-~
ber ordinate becomes

= -——L—— z z ” ‘
%0 = Tsin 80 Am I’m,s (14)
m s

The summation on m is made over all values of m for which the Am coefficients are

known. The Lm,s functions are as follows:




Li,1 = k3 Eﬁlm(Gz) - Em@] - K2 EEm(fﬂ) - Em@]

+ %(k% coszez - k% cos291)Dm(7T) - <k§ cos by - k% cos 91)%@ (15)
Lma = % xQg - (Xa + klytEZDm(w) + kl[xo - (Xa + klyt):][:%Dm(") - Dm(%)] (16)

Ly 3 = -k Epy(63) + K2 Em@ - 4«:% - k%)Em(ﬂ)

) %é(% - k3 sin2 93> Dy, (7) - l}% - k3(1 + cos 93)]Dm<-;1) 1

L= (k'l - k1> (XO - Xk)E)m (9k> - Dm(%) + —é—(cos Gk)Dm(ﬂi,
(k'lz - %)Eﬂm (Bk)— Em@:) + -lee(cosz 9k>Dm(1r) - (cos Gk)Dmg-ﬂ (18)

L 5 = kz[ 92) Em(wil <k2 cos 92> E)m<g-> - 71—<cos 92) Dm(w{[ (19)

The particular L., o functions to be used and the values of 0 to be inserted in these
3
functions are specified for the various ranges of the field-point locations.

(1) For field points forward of the wing leading-edge kink and the trailing-edge
root {@ <x®§xk§cr or 0<xgscy §‘Xk>5

Z Lm,s = I-‘m,l
S



with

where ki isusedin Ly j inplace of kj.

(2) For field points forward of the wing leading-edge kink but behind the wing
trailing-edge root (cr <xg = xk):

z Lm.,,s = Lm,l

S
with
X
61 = cos~1/- -—,Q
kq
Cp. ~ X
8 = cos~1-L 0
ky

and again ki is used in Lyy,1 in place of kj.

(3) For field points behind the wing leading-edge kink but forward of the trailing-edge
root and of the outboard leading-edge tip (Xk <xXgScpSxy+ kmC or

X <Xy =X +K¥g = cr>:

z Im,s = Lm,1 + Lm 4
S
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with

X, - X
ﬁi = c@s-l _3&.._;(_)

8o

E4]

i

oo =

b = cos1 o)

(4

(4) For field points behind the wing trailing-edge root and of the wing leading-edge

P4
2
FAS
by
)
i

CpEXg < Xg =X, + klyt)

Z Lm,s = LmD]_ + Lm,4
5

with

X —
By = cog-1 *a ~ %0
; e
-1 % " %0
k9

89 = cos

G = 605—1(“3’1{)

(8) For field points behind the wing leading-edge tip and the trailing-edge root, with
/ ]
2\” 3;32\,3 streamwise wing tips (cr S Xy + Ky <xg = cp +kgyp oOr
Hg + Kqyp Scp<xg=Ecp+ kzyt):'

Lm,s = Lm,l + ngZ + Lm’4

with
61 =m
Cr ~ X
65 = cog~1 X0

O = cos'l(—yk>



(6) Same as (5) except <@? So< %) wing tips not streamwise
Cy =%, + Kyys <X Sw or + E1¥s S Cp <X Sw'
r =% iVt @-kgmkg %a 1¥e = Cr Q*kz-k;;“

N -
ZJ ngs = ngz + L 3 + L4+ Lm,ﬁ
g

with '
c.~ X
Oy = ws‘“ﬁ 0
, ko
- -1 % - *0
93 = CO8 Wkg
6 = cos™ ()

The camber equations given in this section complete the presentation of the method
of calculating camber for variable-sweep wings using the sonic slender wing theory. The
wing geometry has been specified, field-peoint locations have been determined, and the cam-
ber relations for various regions of the wing have been stated. The way in which the
method can be applied fo wings of simpler planform has also been indicated. The next
section will present camber results which have been obtained for some specific planforms.

Calculated Camber Results

Camber ordinates have been calculated for the variable-sweep planiorm shown in
figures 3 and 4. At the design sweep angle of 75° 58', the leading edge is straight and
the wing has an aspect ratio of 1.64. At the most forward sweep of 15° 58', the wing tips

are streamwise. Camber results for these two wing sweeps and for a third intermediale
sweep angle of 459 58" are presented in figure 5.

The wing loading imposed for all sweep positions was elliptical spanwise except in
the vicinity of the wing tips which were intentionally unloaded. Consequently, the ordi-
nates presented for each wing-sweep position represent the camber required to achieve
nearly elliptical span load distribution at that wing sweep. As explained in a preceding
section, the variable-sweep wing planform has been idealized in the region of the pivot by
extending the inboard and outboard leading edges to a common intersection at the kink
point and by extending a straight trailing edge into the center line for all wing-sweep
positions.

The camber ordinates are calculated with respect to an orthogonal Cariesian coordi-
nate system with its origin at the leading-edge root of the fixed inboard part of the wing.
These ordinates are therefore absolute in that no shear or dihedral variation has been
applied to them. The field points (points at which the camber has been calculated) were




located along constant x lines for the wing in the fully swept (75° 58') position. For the
other two sweep positions, the field points were maintained in the same relative positions
with respect to the local planform geometry so that those points which were located on the
outer wing panel moved with the panel as the sweep was varied. (See fig. 4). The cam-
ber ordinates in figure 5 have been plotted‘as a function of the original field-point positions
on the variable-sweep wing in the fully swept position. By this method the calculated cam-
ber lines for the wing can be traced through the various sweep positions. Of course, only
a deformable wing could satisfy the conflicting camber requirements for the various sweep
pogitions. . However, by a suitable choice of pivot axis orientation and initial wing shear or
dihedral variation in the fully swept design condition, the conflicts may be minimized and

a satisfactory compromise may be possible. This aspect of the problem has not been
treated herein. For comparison purposes, supersonic (M = 3) camber lines are also
shown in figure 5 for the 75° 58' sweep angle. The supersonic camber was calculated by
using references 7 to 9.

Mean line camber ordinates were also calculated for a conventional sweptback wing
with straight taper and streamwise tips. The wing had an aspect ratio of 8, a taper ratio
of 0.3, and a quarter-chord-line sweepback angle of 40°. As mentioned previously, wings
of this type can be represented in the equations of the preceding sections by specifying a
pivot axis which coincides with the wing leading-edge apex. Camber ordinates are shown
in figure 6 for spanwise locations at 0.1, 0.3, 0.5, and 0.8 of the semispan and are com-~
pared with ordinates (presented in ref. 10) which were calculated by a different method.
In figure 6, the camber ordinates have been adjusted to give a zero camber ordinate along
the leading edge. The wing section of the model of reference 10 was formed by distributing
standard symmetrical airfoil thickness profiles (NACA 65A-series sections) from refer-
ence 11 about the calculated mean line camber ordinates.

A limited appraisal of the value of slender wing theory for design purposes may be
obtained from the aerodynamic data of reference 10. The data indicate that some modifi-
cations to the basic wing design were necessary to improve aerodynamic performance in
the high subsonic speed range. The primary modification was an extension of the inboard
leading edge. This extension increased the sweep angle and reduced the thickness ratio
and leading~-edge camber in that region. The local supersonic flow on the inboard portion
of the wing was relieved and the formation of strong shocks which were encountered in that
region was delayed by the modification. Further modifications to wings of this type were
reported in reference 12 and confirmed the results shown in reference 10.

The wing planform of reference 12 resembled the planform of variable-sweep wings
in an intermediate~-sweep position, but it was a fixed-geometry wing configuration. As
previously mentioned, wings of this type can be represented in the equations of the



preceding section by specifying that the pivot axis coincides with the wing leading-edge
kink position and by employing equation (12) to relate E} to ¢..

The slender wing (linear) theory for Mach 1 is not considered to be adequate for
the calculation of the actual detailed shape of the airfoil section camber for supercritical
wings designed for near-sonic speeds. These wings tend to be heavily loaded and have a
large region of supercritical flow. Consequently a more elaborate nonlinear transonic
analysis in which a separation of camber and thickness effects is not possible or a trial-
and-error experimental development is considered to be necessary. Despite this limita~-
tion, an application of the linear theory for the prediction of wing twist distribution for
wings of this type has been examined.

The results of a twist calculation for a supercritical wing planform designed for
near-sonic speeds is presented in figure 7 where the twist angle ¢ was calculated from

ZQ 0
tane = <__> - @_>
C/1e \Clte

The experimental data shown in this figure are based on unpublished results obtained at
the NASA Langley Research Center by Charles D. Harris, Charles H. Fox, Jr., Robert T.
Taylor, Dennis W. Bartlett, and Richard J. Re. An elliptical spanwise load distribution
was assumed for the calculation and was approximately the same as the measured span-
wise load distribution. The experimental twist distribution was obtained from structural
wing twist data and was corrected for aeroelastic effects. An adjustment for wing inci-
dence and the effect of angle of attack was also made.

A comparison of the twist distribution predicted by the linear theory with that
obtained experimentally shows that the linear theory predicts the general magnitude and
trend of the spanwise variation of the twist angle. However, for a unit lift coefficient
(CL, = 1.0), the experimentally determined twist distribution exceeds the calculated results
by about 2° to 4° (excluding the immediate region of the kink). An experimentally deter-
mined adjustment of the wing incidence angle may therefore be necessary in applying the
theory. It should be noted that the experimental results include the effect of a fuselage
extending approximately over the inboard 10 percent of the wing; however, fuselage effects
were not included in the linear theory prediction.

CONCLUDING REMARKS
A calculation procedure based on slender wing theory at Mach 1 has been derived for

the determination of the mean line camber ordinates for polygonal planform wings with
lateral symmetry. A uniform chordwise load and a continuous but otherwise arbitrary
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spanwise load distribution was assumed. The range of applicability of the results is gen-
erally restricted to low lift coefficients and high subsonic speeds for slender wings for
which the slenderness parameter BA is small.

Although the slender wing theory for Mach 1 is considered to be inadequate for the
calculation of the detailed shape of airfoil section camber for supercritical wings designed
for near-sonic speeds, a comparison with experimental results shows that it predicts the
general magnitude and trend of the spanwise variation of the twist angle. An experimen-
tally determined adjustment of the wing incidence angle may, however, be necessary in

applying the slender wing theory to supercritical wings.

Langley Hesearch Center,
National Aeronautics and Space Administration,
Hampton, Va., June 28, 1971,
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APPENDIX A
EVALUATION OF THE Bp FOURIER COEFFICIENTS

The Bp Fourier coefficients for a wing of arbitrary planform with a spanwise load
distribution which is everywhere continucus are given by

¥
(IR

s,

9 (T
an"g P*ginnd dé
T Jg

where P* has been assumed to be an odd function of 6. If the wing has lateral symme-
try, that is, symmetry about the x,z plane at y = 0, then only odd harmonics will occur
in the By coefficients. Consequently, equation (Al) may be changed to an integral over

the right half of the wing

T
Bp=2\| P*sinnoas (A2)
/2
For this case P* is not only an odd function of 6 but is also symmetrical about 0= %
The further restriction of uniform chordwise load distribution is now introduced so that
ACp = CZ
Consequently, equation (2) may be rewritten as
%) XB
P =§ ¢ dx = (xp - XA )C (A3)
iy & (xB - xa)er (A3)
The spanwise distribution of c¢; may be expressed in the trigonometric series of
equation (11)
cy = Z Ay, sin mé (44)

m

The series for c; can be a finite trigonometric series or it can be a Fourier series. In
the latter case, generally just the first few terms are needed for c¢; distributions which
are smooth. The use of equation (A4) in equation (A3) yields

P*= (XB - XA) }: Ay, sin mé (A5)




APPENDIX A — Continued

Egquation (A2) for the B, Fourier coefficients then becomes

T
Bn=%§ (XB- XA)Z Ay, sin mé sinn6 dé (A6)
/2 T

By interchanging the order of integration and summation, equation (A6) may be rewritten
as

By, = 42 5 XB XAsmmGSmanB (A7)

The type of polygonal wing planform initially to be considered is shown in figure 2.
It is a tapered sweptback wing with straight leading and trailing edges and with stream-
wise tips. In this case the geometric variables for complete planform definition may be
expressed in three parameters: aspect ratio A, taper ratio X, and sweep angle A. An
extension to more general planform shapes such as those encountered on a variable-sweep
wing is given in the main text.

For illustrative purposes, a field point will be considered where a Mach line through
the field point intercepts both the leading and trailing edges. In this case, the field point
is behind the trailing-edge root (x = cr> but forward of the leading-edge tip (x =KVt ‘
where ¢y = Xg = Kk, as shown in figure 2. The lower limit xA in equation (A3) is given
by the wing leading edge as kjy or -kj cos 6. The points where the Mach line x = Xg
through the field point intercepts the wing edges are designated as yy = -cos 91 for the
leading edge and yg9 = -cos 69 for the trailing edge. Consequently, for span stations
inboard of 03, the upper limit xpg is cy - k2 cos 0, and for span stations between 0y
and 0y the upper limitis x;. After substitution of the appropriate limits, equation (A7)
for the Fourier coefficients becomes

6
B, = %Z Ay S;T/ZZ l:(kl - kz)cos 6 sin m6 sin n6 + ¢, sin m#é sin nejcw

1%
1
+ S; (kl cos 0 sin mé sin né + xg sin m6 sin n9)d9 (A8)
“o2

Upon integration and substitution of the relation
x(y = -kq cos 01 = c, - kg cos 6y (A9)

which is valid in the region ¢, = xg = ky, equation (A8) becomes



APPENDIX A — Concluded

\
=4 A, kl{[cos o1 F(6y) - G(@lﬂ - [cos 6 T G(ﬂ
m /
-k Eos 65 F(6y) -~ G (ezﬂ— E:os 6 F@ - G(%)] (A10)
where
F(G) |:sm(rrll_— m)@ _ sinfln:r;n)ﬂ (a11)

n-m+1 n-m-1 n+m+1 n+m-= 1 !

a(6) = I:sm(n - m + 1)6+ sinn - m - 1)0 _sin(n + m + 1)6 _ sin(n + m - ﬁ,)cﬂ
e

(A12)

Simple indeterminate forms which are encountered in equations (A11) and (A12) may be
evaluated as follows:
] sin p?@
lim =
p-0

(A13)

It should be restated here that the Bp Fourier coefficients obtained from equa-
tion (A10) are limited in application because of the assumptions inherent in the derivation.
Equation (A10) is restricted to straight-edged sweptback wings with lateral symmetry and
uniform chordwise load and is specifically formulated for field points in the region
cr = %0 S ki. These limitations are carried over to the evaluation of the C;,
coefficients in appendix B.
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APPENDIX B
EVALUATION OF THE C; COEFFICIENTS
The Cp coefficients are evaluated from equation (8) by using equations (A9)
and (A10) and therefore are subject to the same restrictions as were the B, Fourier
coefficients evaluated in appendix A. That is, they are for a polygonal planform (straight-
edged) wing with lateral symmetry and for a uniform chordwise load. The field point is

also located in the region cy = Xg = kqy. The extension to wings with less restricted plan-
form and field-point location is given in the text.

With the substitution of equation (A10) into equation (8), the expression for the Cp
coefficients becomes

Cp=-3 ;Am ky gOXo lrfos 61 F(61) - G(@lﬁ— Eos 61 F(127-> - G@] dx

~ k9 goxo Eos 69 F(62) - G(@zﬂ - E:os 09 F@ - G@] dx (B1)

From equation (A9) it can be seen that

dxg = kg sin 61 déq (% = 0% 91> (B2)
and
dxg = ko sin 69 df <—721 =6= 92> (B3)

Substituting equations (B2) and (B3) into the first and second integrals, respectively, of
equation (B1) gives the expression for Cp

o1
Cn=-2) Apfk? 3;/2 [cos 61 F(61) - G(elﬂ - [cos 61 F@ - G(%ﬂ sin 61 doy
m

- k% S‘:/zz &:os b9, F(62) - G(Qgﬂ - Eos 69, F(%) - G(%):‘ sin 09 dog (B4)

Integration of equation (B4) yields
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APPENDIX B — Continued

Eﬂ(eﬁ - H@] Ewn - 1@]}
- K5 %E{(@z) - HG—H - E(Qz) - 1@-)] (B5)

H(6) = sin(n + m +2)0 2 sin(n + m)6
"ThrmhimsDo+m+2) @em- Do+ m@osmF L)

=1I|‘u=-
B M

where

sin(n + m - 2)6 2 sin(n - m)6
(n+m-2)(n+m— 1)(n+m) n-m-1@n-mfn-m-+1)

sin(n ~ m + 2)6 sinfn - m - 2)6 (BE)
m-min-m+1)n-m+2) @-m-2)n-m-1)n-m)

I(0) = cos 9% cos 6 F(—%) - G<%>] (BT

The simple indeterminate forms which are encountered in equation (B6) may be
evaluated by using the form of equation (A13) as follows:

; sin{n - m)0
(n_%;r)n* o&n -m-1Dn~-m)n-m+ 1)] -0

Lim sin(n + m - 2)0 k _8
(n+m2)-0(n+m 2+ m - 1){n + m) 2
lim "~ sin{n - m + 2)6 _8
(n-m+2) — 0| - m)n ~ m + 1)(n - m + 2)| 2
; [~ sin(n - m - 2)6 _____9_
(n-réi’;) ~o[m-m-2@-m- Da-m | 2
. sin{n - m + 2)8 in(n - 2)0 3
(n-ggn_,o[(n-m)(:l-m+1§(n~m+2)+(n— —312)(n-m - 1)( rn)] §cos 26 - 5 sin 26
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Once again it should be stated that the limitations inherent in the B, Fourier coef-
ficients represented by equation (A10) also apply to the C, coefficients represented by
equation (B5). The derivation of these equations, however, is indicative of the methods
used [or extension to less restricted planform and field-point locations. The limitation
to uniform chordwise load, however, is retained throughout the -analysis.
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APPENDIX C
ANALYTICAL SUMMATION OF SERIES

The series summations over n of equations (6) and (7) with the use of equa~
tions (A10) and (B5), respectively, are not rapidly convergent and generally require 2
large number of terms to be summed before a satisfactory numerical result is achieved.
With equation (B5) for the C, coefficients substituted into equation (7) and with the order
of the summations over n and m interchanged, the summation over n may be
obtained independently of the summation over m. An example of the methods used to
obtain one of the summation terms is presented in appendix D. Similar methods are
applicable to the other summation terms. The results of the summation are summarized

as follows:
o0
Z n sin n80|:cos 6 F(0) - G(QZI = Dpy(6) (C1)
n=1
[>0]
z n sin néy F<§> = —-—D m(m (C2)
n=1
z n sin nfy G@ = -Dm<-721> (C3)
n=1
w .
Z n sin n6y H(6) = Epy(6) (C4)
n=1
where
5 \
2 6, sin(m + 1)0
1 sin“(6g + 6) 910 sin( 2r)6 . 2 sin 6 sin .
m(@):%‘-cosezcosmeologL—i—m—B + 2 ZI sin 2r zlrnm r o + 6 sin m6

m+1 B
3 16 sin(ar - 100\
. 1 [;m(@O + 6) 1 - cos(8g - ) Z sin(2r - 1)6, sin{2r ~ 1)
+(m cos még cos 6 - sin még sin 60> 10g|§1n(90 T 1 cos 90 ) A P J

m+1
1 . ) 2 cos(2r - 1)6p sin(2r - 1)€
- n?‘Zm sin. mé sin dg - (m sin m6g cos 6y + cos mop sin 80) Zl re]
r=

(9 £ 6y) (C5)
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- %Dm(’ﬂ'} = %ﬁl sin m#é (C6)
1 9 9 ) ) 1 sin®(6y + 6)
E.,(8) = 3 m(cos 0 + cos 90>cos méby - 2 cos 6g sin 6 sin moy Elog T
sin“(6gy - 6)

m+1

2 . .
. Sin 2réy sin 2ré
-4 Z + = cos 0<m cos méby cos g - sin m90 sin 90>

4
= 2r
s m-+]
. P]
Ji 51n2(90 + 6) 1 - cos(bpy - 6) sin(2r - 1)6y sin(2r - 1)6
X\%’mg""_z'_-— + log + 4 Z
L' sin®(6g - 6) 1 - cos(6y + 6) =2 2r - 1
+ Y sin még(cos2o 290) + 2 sin 6 0 6
5 s 0(cos™8 + cos®8p) + 2 sin 6y cos 6y cos m6)
r m+1
2 .
cos 2r90 sin 2r6
X126+ 4 z > - 7 cos 9<m sin m6y cos 6y + cos még sin 90>
r
r=1
_ mil
y 2 cos(2r - 1)6g sin(2r - 1)6
‘ Loed 21‘ -1
- r=1

cos 0 sin mOg sin 6y

. g(m i 2}E>in(m - 1)6 sin 6o . sin(m + 1)6 sin 390] 1(m-1)

8 m-1 m + 1 2 m
.1 m(2 + cos 26) . .
FF o sin(m + 1)6 sin 6y © # 6g) (C7)

g
Qo
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Bl 1) sinlr gy |
Em(6) =%— cos 90<m cos 6g cos mg - sin 6g sin m90> 10g<005260> -4 z - - 9

T
r=1

(-1)¥ cos rép sin rz’y“@\'
T

r=1 /

m+1

+% cos 90<m cos 6g sin még + sin 6y cos mé)o) 200 + 4

+Lm- 9 sin{m - 1)6g sin 6y . sin(m + 1)6g sin 36
8 m-1 m + 1

m(2 + cos 26g)
4(m + 1)

- (%I;H—D- cos g sin méy sin g +

sin(m + 1)8g sin 6y

and the indeterminate form in equations (C7) and (C8) may be evaluated as follows:

sin{m - 1)6p sin 6
1im[ (m - 1)% O:!=9()sin00
m-1

m-1

G C)

m sin moy m sin méy
presented in graphical form in figures 8 and 9 for odd values of m upto m =39, A
curve for m approaching < has been added to show the limit toward which these func-
tions tend as m grows very large. Figures 8 and 9 have been prepared for-fixed values
of yp corresponding to values of 65 at 7.59 increments from 90° to 172.5°. The
curves at 6y = 1200 for the odd values of m which are multiples of 3 have been deleted
from figures 8(e) and 9(e). They are presented separately in figure 10 for D, (6) and in
figure 11 for E,(6). These extra figures are necessary because sin mfy equals zero

in the denominator of the functions presented in figures 8 and 9 at 6g = 120° for these
values of m.

To assist in numerical calculations, the functions are




APPENDIX D

DERIVATION OF ANALYTICAL SUMMATION OF SERIES

The derivation of the closed-form result (eq. (C5)) of the summation expressed in
equation (C1) is shown in detail.

Equation (C1) is rewritten
n sin n@OEos 6 F(6) - G(Bﬂ
n=1

(D1)

<0

—

The substitution of the expression for F(0) from equation (All) and for G(6) from
equation (A12) into equation (D1) yields

D(6) =

. n sin nfy -;-cos 9‘:5
n=1 A

in(n - m)6 _sin(n + m)GJ
n - m n + m

_ _:{sin(n -m+1)6
4

n-m+1

+sin(n—m— 1)0 sinn+m + 1) sin(n +m - 1)
m-m-1

8
n+m+1 n+m-—1J (D2)
Equation (D2) may be simplified to

©0

- ; m sin(n - m)6 . sin{n + m)0
D, (9) = _2] sin nf (5 cos 9[ LRl

n=1 -

n+m

m - 1[sin(n - m+1)9+sin(n+m~ 1)0 _m+1rsin(n— m - 1)9+sin(n+m+1)
4 | n-m+1 n+m-1 4 |

6
D
n-m-1 n+m+1] (D3)
As previously mentioned, if the wing has lateral symmetry, then only odd values of n
occur.

Consequently, with the substitution of n=2r -1 where r takes on consecutive
integer values, equation (D3) may be rewritten as

Dm(6) = ) sin(2r - 1)8o(2 cos eﬁin(zr -m - 1)8, sin(2r + m - 1)ﬂ
. 2 2r-m -1
r=

2r+m -1
m - 1I|:sin(2r - m)d + sin(2r + m - 2)
4

9 _m+1Ein(2r—m— 2)6 | sin(2r + m)
2r - m 2r +m - 2 4 l_

6
2r-m - 2 * 2r + m ]} (D4)
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After rearranging and combining terms, equation (D4) becomes

m+1

Dy, (6) = _r;_ cos f<cos mby

?E

r=1

m+1
22: cos 2r( 90 + 6) . cos{m + 1)(6g - 6) ) cos(m + 1){6g + G;l

m+1 m+1 J
r=1
m+1 22’21
_ sin 2r(6y + 6) sin 2r(6p - 6)
+ sin méby Z —_— " z —
2r 2r
r=1 r=1

_ sin(m + 1)(6g + 6) . sin(m + 1)(6p - 6)

+ 0
m+ 1 m +1

i cos(2r - 1)(6g - 6)
2r - 1

- <m cos mog cos 6p - sin még sin 90> -%—
=

2r

o g
i cos 2r(90 )] z cos 2r( 90 + 9) cos 2r{dg - 9)

m+l
@© 2 - -
_ % Z cos(Z;"re-l)l(Go + 0 ) Z sin(2r - ;LH? im(Zr - 1)6 ~ mz;n1 sin m0 sin 6
r:l r:l
m+1
- i - 1)8
- (m sin mOg cos 6p + cos mbg sin 60) Z cos@r ;ie? iln(Zr 1) (D5}
r=1
The following summation is presented in reference 13:
[>0]
oS 1o _ l 1 . y ¢ 3
Z -7 [gﬁ"c—os“@;] O<o=zm 9
From equation (D6), the following summation may be obtained:
[%e]
cos 2rf _ 1 1 0<6< D7)
Zl 2r 4 IOgEil - Ccos 23:15 ( < (o)
Ir=
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Equation (D7) may be rewritten as

o0

os 2rd .
Z Ei—é?x-‘— = - %log(él sin? 6) (0<6<m) (D8)
r=1

The series of equation (D6) may be written as the sum of two series

o0 [~ [~e]

N cos rf _ Z cos(2r - 1)6 cos 2rf

) SFc 2r -1 Z or (D9)
r=1 r=1 r=1

The substitution of equations (D6) and (D8) into equation (D9) yields

jee]

v cos(er - 16 _ 1, sin §_\2 0<0<m D10
£ 2r - 1 2% (1 cos 0 ( ) o)

The cosine series of equations (D8) and (D10) and the functions they represent are
even functions of 6 and are periodic in intervals of 27. Consequently, the intervals of
convergence of equations (D8) and (D10) may be written

-7 < <0, 0<8<m, W< O<2T

It is therefore seen that, in these two equations, the series converges to the function
everywhere except at 6=0 andat 6=+pm where p 1is any integer.

With the use of equations (D8) and (D10), the infinite series in equation (D5) may be
written as

fee] [~¢]
cos 2r(9 - 6) cos 2r(6p + 6) sin2(6g + 6
Z 0 z ( 0 = 211— log ==t 2( 0+ 9) (D11)
=1 —1 sin<(6g - 6)
and
o0 (=0}
Z os(2r - 1)(6g - 6) Z cos(2r - 1)(6p + 6) _1 lo sin(6g - 6) 1 - cos(6g + 6) 2
or - 1 or - 1 2 %Sim(6p + 6) 1 - cos(g - 6)

r=1
(D12)

In equations (D11) and (D12), the range of the angle arguments are {since, in general,
g £ 0= “? - -5- = (6g - 6) S% and 7= (6g+ 6) =27, Therefore, the use of equations (D11)

and (D12) in @qua,tlon (D5) is valid everywhere except at 0= 6.
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Substitution of equations (D11) and (D12) into equation (D5) yields, after
simplification,

m+1 \2

in2( 4, I : : 2 sin 6p sin(m + 1)8 \

Dm(6)=—rzgcos o<1 cos méy logw—z+2 Z sin 2r6 sin(m - 2r)0 0 + 9 sin m%)‘
4 sin2(6g - 6) = 2r m+1 %

:
<

o 2
sin(fg + 6) 1 - cos(6g -~ &
+ (m cos méy cos §; - sin m6by sin 90) %10 [sin(% + 0 % H

g'iin(eo -6 1-cos(fy+06

m+1
sin(2r - 1)6g5 sin(2r - 1)8 ~
+§ 0 ( - 1sinmesin90
2r - 1
r=1

m+1
cos(2r - 1)6y sin(2r - 1)8
2r - 1

- <m sin m6y cos 6y + cos méby sin 90) Z (6# 6 (D13)

r=1

Equation (D13) is the same as equation (C5). The other summation expressions which are
represented by equations (C7) and (C8) may be obtained in a similar manner.




APPENDIX E
CALCULATION OF THE A,,; COEFFICIENTS

The desired wing spanwise load distribution is considered to be known so that, for a
given planform, the spanwise distribution of section lift coefficient c; is also known. If
an analytical expression for the c¢; distribution is known, then the Ap, coefficients of
equation (11) can be found by a Fourier expansion. However, if the ¢ ; distribution is
known only numerically, then the A, coefficients may be approximated by simple '
numerical methods for all but the most irregularly shaped c; distributions. Two such
methods are the 17-point odd harmonic numerical method for the sine terms presented in
reference 14, and the method in reference 11.

The Ay, coefficients for elliptical spanwise load (cc;) distribution on straight-
tapered wings with streamwise tips may be obtained as follows:

107 4 /2
Amzﬁy ¢; sin m9d6=5§ ¢; sin mo do (E1)
=T 0
where, for elliptical spanwise load
cey = % cr(l +A)Cy, sin 6 (E2)

In the range of 0 from O to -g—, the chord distribution may be expressed as

A

¢ = cr[l - (1 - X)cos 9] <0 =6 %) (E3)

Substituting equations (E2) and (E3) into equation (E1) yields

/2 . .
A =21 +0)Cy g sin Osinmb 4 (E4)
2 0 1-(1-2X)cos 6

The solution for the integral of equation (E4) can be written in the recursion form

A

1_41+2 :
*@‘g E fK<Km—1 - Km+1> (E5)

and the recurring Ky, functions are evaluated
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= ———1-—'-&—<£ +sin~1 |1 - 7\[)

Kn =
0 m/h(z -0 2

Ky 1
K177ox 2
2 .. m7 2
Km_1+Km+1="'I;H7-T'SlnT +1_>\Km

Table 1 presents values of Ap / Cy, for values of X from 0 to 1.0. The values

of Am /CL for » =0 are for a wing with pointed tips and do not represent a realis-
tically possible lift coefficient distribution. They are included in the table only to indi-
cate limiting values of Ap, / Cy, as X — 0. In general, the first few entries in the
table (at the lowest values of m) were obtained with the recursion formula of equa-
tion (E5). At the higher values of m, the table entries were obtained by numerical
methods.

The method of solution for camber presented in this report is not well suited for
use where a uniform spanwise section lift coefficient distribution is desired. However,
approximate results can be obtained with the Apy / C1, values presented in table 2 which
were computed by the method of reference 11. The values of 4/mm obtained by
Fourier expansion for a uniform c¢; distribution are included in the table for comparison
purposes. '
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TABLE 2.- Am/CL FOR UNIFORM c¢; DISTRIBUTION

m Am/Cy, 4/mm

1 1.27062 1.27324
3 .41652 42441
5 .24142 .25465
T .16318 .18189
9 .11708 .14147
11 .08542 .11575
13 .06128 .09794
15 .04142 .08488
17 .02402 .07490
19 .00788 .06701
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